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Abstract
We report on contact mechanics experiments addressing the role of surface roughness on
interfacial stiffness and adhesion. Colloidal atomic force microscopy probes, based on
poly(dimethylsiloxane) microparticles, are pressed against ceramic substrates with different
roughnesses; the applied load, deformation rate and dwell time being separately controlled. We
observe a clear dependence of load–deformation curves and pull-off forces on roughness values,
likely arising from morphological modulation of the contact area; remarkably this affects the
contact stiffness, which is found to decrease for rougher junctions. The emergence of purely
geometrical effects for poly(dimethylsiloxane) rough contacts extends previous findings on
plastically deformed self-affine surfaces and demonstrates the efficient tuning of contact
response through a proper design of surface morphology.

1. Introduction

Surface roughness plays a major role in contact mechanics,
with relevant implications for fundamental phenomena like
adhesion, friction, wear and lubrication [1] and deep
consequences on technological developments, including
coatings technology and microelectromechanical systems
design [2, 3]. It is well known that even a surface roughness of
just few nanometers is enough to prevent the formation of an
intimate contact between (elastically) hard solid surfaces, since
the contact area is reduced to a small fraction of the nominal
one and discrete, randomly distributed contact spots are
formed; conversely the true area of contact might exceed the
projected one for rough and (elastically) soft surfaces that are
pulled into conformal contact by adhesion. The competition
between the elastic energy and the adhesive energy stored at
the contact interface dictates the magnitude of the real contact
area under equilibrium conditions [4]: this point was originally
addressed in macroscopic pull-off experiments recording the
variation of adhesive force with roughness for a viscoelastic

1 Author to whom any correspondence should be addressed.

rubber ball squeezed against a hard substrate [5, 6]. Recently,
there have been ongoing efforts to refine this simple picture in
order to describe more realistic soft contacts, characterized by
multi-scale fractal roughness [7], tack dependence on contact
time and pressure [8] and eventually cavity nucleation [4, 7, 9];
these studies will have a significant impact for a number of
emerging applications, e.g. soft lithographies, elastomer-based
bioMEMS and biomimetic adhesives [4, 7, 10, 11].

It is expected that experiments conducted at the mesoscale,
where both contact mechanics and morphological roughness
are measured with nanoscale accuracy, should provide deeper
insight on the behavior of rough junctions. So far,
contact mechanics experiments addressing the interplay of
viscoelasticity and morphological roughness at the mesoscale
are still in their infancy. Few existing studies explore tack
forces for relatively smooth and elastically stiff interfaces,
formed by well-characterized polymers: they are conducted
with sophisticated, custom-designed instruments (e.g. surface
force apparatus) that often suffer from reduced flexibility in
terms of testing materials and contact geometries [12–14].

Atomic force microscopy (AFM) offers the possibility
of exploring mesoscale contact mechanics by performing
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indentation experiments with colloidal probes. This approach,
originally introduced by Ducker et al [15], is implemented
by gluing a microsphere at the end of an AFM cantilever,
then recording the interaction force between the sphere and
a target surface. Colloidal probes with rigid inorganic
beads (e.g. borosilicate glass) have been successfully used
to measure the reduction of van der Waals adhesion due to
nanoscale roughness [16], albeit with negligible deformation
of the contact interface. In contrast, reports concerning
poly(styrene) and poly(ethylene) probes attested interfacial
plastic failure to occur at nanoscale asperities protruding from
their surface [17, 18].

Our experimental strategy for studying the deformation
and adhesion of rough contacts under fully reversible
conditions focused on the use of poly(dimethylsiloxane)
(PDMS) colloidal probes. We first prepared PDMS
microparticles by water emulsification and cross-linking
of a viscous prepolymer; the resulting beads were then
attached to AFM cantilevers under optical microscopy using
a micromanipulation stage. We tested the particle’s response
by acquiring load–displacement curves on SrTiO3 ceramic
substrates having different nanoscale roughnesses.

The present work extends our recent studies on the
contact mechanics of PDMS beads pressed against smooth
mica substrates [19] and provides a phenomenological
description of the PDMS response in presence of interfacial
roughness; from a broader perspective it complements some
earlier measurements studying the role of nanoroughness for
plastically deformed diamond/SrTiO3 contacts [20].

2. Experimental techniques

2.1. Preparation of PDMS beads and colloidal probes

PDMS microparticles were synthesized by emulsification in
water of a commercial viscous prepolymer, Sylgard 186 by
Dow Corning [19]: this is supplied as a two-component kit
consisting of a viscous base and a liquid curing agent. A 10:1
(by mass) mixture of base and cross-linking agent was poured
on the rotating disk (1 cm diameter) of a DC motor, immersed
in a 500 ml glass beaker filled with Milli-Q water and rotated
at a speed of about 2000 rpm for few seconds. The beaker
was then placed inside an oven and heated at 60 ◦C for 24 h, in
order to cure the emulsified droplets to a flexible elastomer.
The suspension was filtered by a 1 μm pores filter, on top
of which PDMS micrometric spheres could be observed by
optical microscopy; these were finally swollen in toluene (to
remove the fraction of unbounded monomers and decrease bulk
viscoelasticity), dried in air and heated overnight at 90 ◦C.

Particles of 20–30 μm diameter were manipulated using
a thin tungsten wire and attached to the apex of silicon
cantilevers with molten Shell Epikote resin [15]. Their
surface morphology was inspected by the Dimension 3100
AFM (Digital Instruments, Veeco), operated in tapping mode:
colloidal probes were placed on a silicon wafer, located
by optical microscopy and scanned by sharp tips. Surface
roughness, evaluated on areas of 10 × 10 μm2, was typically
of ∼2 nm. Scanning electron microscopy (SEM) (CrossBeam

Figure 1. SEM micrograph of a PDMS bead glued to the free end of
an AFM cantilever (top view; white bar corresponds to 4 μm): it
shows sub-micrometric particles around the bead–cantilever contact
region, that are likely to originate from the gluing process; isolated
nanometric asperities are visible on the lateral surface of the bead.
The contact region (roughly circled by the white dash line) is free of
relevant bumps.

1540 XB, Zeiss) was also used to check particles’ overall shape
(figure 1). We intentionally discarded colloidal probes with
AFM and SEM topographies showing isolated asperities, of
a few tens nanometers in size, placed on top of the contact
region.

2.2. Preparation of substrates

The studied specimens consisted of commercial single-crystals
of SrTiO3 (Crystal-GmbH), commonly used as substrates for
the epitaxial growth of oxides [21]: one side of each substrate
is chemo-mechanically polished by the manufacturer in order
to obtain an atomically smooth (001) termination, while
the backside is lapped with a roughness in the micrometer
range. In the following we refer to ‘sample 1’ and ‘sample
2’ to indicate two SrTiO3 substrates exposing respectively
the atomically smooth frontside and the micrometric rough
backside to the PDMS probe. We further lapped the rough
side of a third SrTiO3 sample, named ‘sample 3’, to obtain a
new surface with intermediate morphological properties with
respect to samples 1 and 2: lapping was accomplished by
pressing the sample against a 300 rpm rotating disk of grade
1000 sandpaper for about 30 min.

Representative AFM topographies of the three samples
are shown in figures 2(a)–(c): monoatomic terraces of
∼0.4 nm height and 150–400 nm width are visible on sample
1 (figure 2(a)), whereas self-affine roughness characterizes
samples 2 and 3 (figures 2(b) and (c)). Self-affinity was
established by evaluation of the height–height correlation
function G(r), defined as G(r) ≡ 〈[h(r + r′) − h(r′)]2〉
where h(r) is the surface height at position r = (x, y) and
the average is extended to all possible values of r′. Essentially
G(r) measures the lateral correlation of the surface height.
For self-affine surfaces G(r) is a function of the length r =
|r|, with asymptotic behavior G(r) ≈ r 2α for r 	 ξ and
G(r) ≈ 2σ 2 for r 
 ξ , where α (0 < α < 1) is the
self-affine exponent, ξ the lateral correlation length and σ the
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(a)

(b)

(c)

(d)

Figure 2. AFM topographies of SrTiO3 single-crystal substrates:
(a) chemo-mechanically polished (001) surface with monoatomic
terraces (white bar corresponds to 1 μm); (b) mechanically lapped by
manufacturer (as received; white bar corresponds to 5 μm);
(c) mechanically lapped (white bar corresponds to 5 μm).
(d) Height–height correlation function G(r) for ceramic substrates:
samples 2 and 3 display the power-law behavior typical of self-affine
surfaces.

Figure 3. (a) Schematics of force–displacement curve acquired by
AFM against an atomically smooth surface; the relevant contact
processes are the approach (1), the adhesive jump-to-contact (2), the
elastic deformation at maximum force (3) and the adhesive
detachment event (4). The value of z0, corresponding to the scanner
displacement at zero tip–sample distance, is assigned at the minimum
detectable attractive force recorded immediately before the
‘jump-to-contact’ event (see the text).

saturated surface roughness [4]. We calculated the height–
height correlation function G(r) using AFM topographies
and averaging over several images, as explained in detail
elsewhere [20]; results are reported in figure 2(d). Samples 2
and 3 display a power-law scaling G(r) ≈ r 2α, with α2 ≈
0.74 and α3 ≈ 0.63 respectively, that proves the multi-
scale, self-repeating character of roughness for r < ξ2,3 ≈
1 μm; on the contrary for r 
 ξ2,3G(r) achieves a constant
value ≈2σ 2, with σ2 ≈ 350 nm and σ3 ≈ 106 nm.
The G(r) function of sample 1 (estimated by averaging
over topographies with different atomic step orientations) is
constant for r > ξ1 ≈ 0.1 μm (figure 2(d)), as expected
for a scale invariant (saturated) roughness σ1 ≈ 0.5 nm. A
quantitative description of surface morphology based on the
height–height correlation function G(r) (or equivalently on
the power spectrum) provides the necessary knowledge for
the implementation of novel contact mechanics models dealing
with fractal roughness [4, 7]. This approach might overcome
some ambiguities related to the description of the contact
interface through statistical distributions of asperity heights,
or local slopes, curvatures and densities of asperities, that are
in fact scale dependent quantities for most real surfaces [20].
We will attempt such a detailed study in our forthcoming
investigations.

2.3. Contact mechanics AFM experiments

Contact mechanics experiments were performed at T =
25 ◦C in ambient air (relative humidity RH ≈ 40–50%),
by means of the Dimension 3100 AFM equipped with
a closed-loop scanner (Hybrid XY Z Scanner by Veeco;
nonlinearity �1%) and operated in contact mode: to this
purpose we glued PDMS beads on relatively stiff cantilevers
(MikroMasch NSC35AlBS, nominal stiffness 14 N m−1).
Standard deflection–displacement curves were obtained by
recording the cantilever deflection u (in V) while ramping the
scanner displacement z (in nm). A schematic of force plots is
shown for clarity in figure 3, where cantilever deflection u was
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converted into normal force F by the Hookean relationship:

F = kCSphu (1)

with Sph photodiode sensitivity (in nm V−1) and kC the
measured elastic stiffness of the colloidal probe. Inspection
of figure 3 allows us to understand the following events: as the
scanner elongates the bead approaches the surface and finally
contacts it with a ‘jump-to-contact’ region. The particle is
then deformed until the maximum load Fmax is applied. In the
receding process a hysteresis appears because of viscoelastic
energy dissipation and the particle remains adhered to the plate
even at the point of zero load; when a tensile force is applied,
the particle passes through the maximum adhesive interaction,
where the adhesive force (or tackiness) Fadh is defined, and
finally detachment occurs. Relevant controllable parameters of
the cycle are the approaching/retracting speed V , the maximum
compressive load Fmax and the contact time tC, separating the
‘jump-to-contact’ and detachment events.

Force–displacement curves can be used to study the
dependence of deformation and adhesion on surface roughness
provided that the photodiode sensitivity Sph and the elastic
constant kC are known with sufficient accuracy. We estimated
the photodiode sensitivity Sph by indenting with the colloidal
probe a silicon wafer close to a fracture edge, ensuring that
only the very end of the cantilever was touching the surface;
to measure the probe stiffness kC we first calibrated silicon
cantilevers using the analysis of Sader et al [22], based
on measurements of lever geometry, fundamental resonance
frequency and quality factor, then we estimated the effective
stiffness of a colloidal probe by multiplying the elastic constant
of the bare cantilever by the factor (Lc/Lb)

3, where Lb is the
distance of the glued PDMS bead with respect to the base of
the lever. Details on the implementation and precision of both
methods are reported elsewhere [19].

Gaining a deeper insight on the contact mechanics
process requires the conversion of force–displacement curves
into force–deformation curves. The deformation δ is
usually calculated as the scanner displacement minus the
corresponding cantilever deflection, that is:

δ = (z − z0) − Sphu (2)

where z0 is the scanner displacement at zero tip–sample
distance. We assigned z0 at the minimum detectable attractive
force of the loading curve (figure 3), i.e. immediately before
the ‘jump-to-contact’ region, and we routinely converted raw
deflection–displacement curves into force–deformation curves
by using equations (1) and (2). The choice for z0, already
suggested in similar studies [23], gives δ(z0) = −Sphu(z0) ≈
0, thus we are assuming that the particle is not deformed at
incipient contact. We recognize that this is a questionable
choice in any indentation experiment involving deformable
surfaces and there is some uncertainty in the actual degree
of strain of PDMS particles at z0, since deformations might
occur prior to contact due to long-range van der Waals forces;
nevertheless we have to ignore such an effect, assuming
that long-range deformations are considerably smaller than
those induced by compressive and tensile forces during the
experiment.

An important mechanical quantity, extensively considered
in the following paragraph, is the contact stiffness sC ≡ dF/dδ,
which can be expressed as:

sC = kCSph
du

dz

1
(
1 − Sph

du
dz

) . (3)

According to equation (3), sC can be estimated directly from
deflection–displacement curves: it assumes finite values for a
compliant interface for which dδ/dz = (1 − Sph du/dz) > 0,
whereas s → +∞ for an infinitely stiff contact (dδ/dz → 0).

Within our experiments the deformation rates and dwell
time were set using the AFM control software: in fact this
allowed the separate control of the loading and unloading rate
in a force–displacement cycle as well as the establishment
of feedback at the maximum applied force Fmax for a given
time: the latter possibility was used to keep PDMS particles in
contact with substrates for few seconds before unloading.

3. Results and discussion

Force–displacement curves reported in the following were
acquired by means of a colloidal PDMS probe of bead diameter
D = (21 ± 3) μm and elastic constant kC = (51 ± 19) N m−1.
Experiments were carried out using different PDMS particles
and qualitative similar features were observed for all of them,
therefore we will focus in the following, for the sake of
quantitative consistency, on data obtained for the 21 μm
particle.

It is well known that PDMS response during force–
displacement curves is strongly affected by bulk and interfacial
viscoelasticity as well as structural rearrangements occurring
at the contact interface: these facts require the contact process
to be probed by separately controlling the deformation rate
and dwell time. We recently examined the dependence of
loading–unloading cycles F(δ) and pull-off force Fadh on V
and tC for PDMS beads in contact with ion-sputtered mica [19],
and quantified PDMS elastic modulus, interface energy and
characteristic relaxation times involved in a typical AFM
experiment. A similar analysis was conducted in the present
case for data acquired on sample 1: this provided a framework
for a comparative analysis with results of samples 2 and 3.

3.1. Loading process

The role of roughness in contact mechanics is highlighted by
figures 4(a) and (b), that compare the mechanical response of
PDMS on samples 1 and 2 respectively. Experimental data for
sample 1 (figure 4(a)) closely resemble the schematic diagram
of figure 3: on approaching the substrate a relatively sharp
jump-to-contact transition takes place (within 30 nm of bead
deformation) followed by a nonlinear increase of normal force
F with penetration depth δ. The unloading process consists
on the contrary of a linear decrease of F with δ, due to
stress release within the contact junction at fixed contact area,
followed by a nonlinear decrease of force associated to crack
opening and detachment events [24–27]. The discontinuous
character of the cycle at F ≈ Fmax reflects PDMS softening
over the dwell time tC due to bulk viscoelasticity; expressions
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Figure 4. Experimental force–displacement curves for a PDMS
colloidal probe of radius R = 10.5 μm interacting with SrTiO3

substrates. (a) Typical AFM force–displacement curve on sample 1.
(b) Typical AFM force–displacement curve on sample 2. (c) Contact
stiffness sC plotted against the externally applied load F : we
estimated sC by smoothing and taking the derivatives of
representative loading curves for samples 1, 2 and 3.

for the Young’s modulus relaxation can be extracted from
the adhesion-induced indentation curves and compared to the
theoretical predictions coming from constitutive models for
linear viscoelasticity, as the extended Zener model [23]. The
latter indicates an exponential decrease of the PDMS elastic
modulus from ∼3.4 MPa (for tC → 0 s) to ∼1.7 MPa (for
tC → +∞), with relaxation time τ ≈ 0.4 s [19].

Figure 4(b) demonstrates a qualitative variation of the
loading cycle when roughness enters the contact interface.
The jump-to-contact transition is less pronounced and occurs
within 12 nm of bead deformation, due to a reduction of the

van der Waals adhesive force over the geometrically rough
contact interface [4]. Moreover, the maximum penetration
depth at F = 5.0 μN is δmax = 810 nm, i.e. 30% higher than
that recorded for sample 1 under similar working conditions
(δmax = 620 nm): this indicates that the rougher contact
is more compliant than the smoother one, despite the fact
that the intrinsic mechanical properties of the system remain
the same. Comparison of loading curves for samples 1, 2
and 3, demonstrates a continuous variation of jump-to-contact
region and repulsive forces with σ (not shown); notably, sC

at F ≈ 0 nN increases from ∼4.5 N m−1 for sample 2
to ∼9.5 N m−1 for sample 1 (figure 4(c)). The origin of
this behavior is qualitatively explained on purely geometrical
grounds, by invoking the redistribution of the external load
on the multiple contact junctions formed between the PDMS
probe and the substrate. In fact for a given deformation δ,
the rougher the substrate is, the smaller is the real contact
area when pressed against the PDMS bead (for fixed load F ,
rougher substrates display higher penetrability). Evidence of
a partial contact between PDMS beads and substrates 2 and 3
arises also from adhesion reduction, as shown in the section
below.

An increased compliance for rough contacts was already
reported by Buzio et al for the plastic flow of self-affine
thin films indented by a micrometric flat AFM probe [28]:
authors observed that for δ/σ < 1 roughness drives the
contact mechanics and surface stiffness sC varies more than one
order of magnitude on small but significant changes of fractal
parameters Df and roughness σ . The present measurements
extend those findings to the case of reversible (viscoelastic)
deformations and δ/σ � 4.

Our findings are consistent with data reported more
recently by Benz et al for randomly rough poly(vinylidene
fluoride-trifluoroethylene) copolymer surfaces indented by a
surface force apparatus [14]: in fact surfaces with roughness
varying from 3 to 220 nm exhibited an almost perfect
exponential repulsion with decay length increasing from 2.0
to 40.0 nm with surface roughness σ ; this directly leads to a
roughness dependent contact stiffness.

3.2. Unloading process without cracking

The dependence of contact stiffness on surface roughness is
also appreciated through the analysis of the unloading process
without cracking: this regime corresponds to stress relaxation
within the contact junction at fixed contact area. Hereafter we
recall that the kinetics of adherence of viscoelastic bodies can
be described by fracture mechanics concepts in terms of the
strain energy release rate G and the Dupré work of adhesion
w0, i.e. crack opening occurs for G > w0 whereas crack
closing corresponds to G < w0; at equilibrium G = w0

(Griffith criterion) [25, 29–31]. For a sphere of radius R in
contact with a smooth substrate under the external load F ,
the dependence of load and indentation on the tip–sample
contact radius a is solved by Johnson–Kendall–Roberts (JKR)
theory [32], showing that:

δ = a2

R
−

(
4πw0

3E ′

)1/2

(4)
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F = E ′a3

R
− (6π E ′w0a3)1/2 (5)

where E ′ = (4/3)[E/(1 − ν2)], E and ν are the Young’s
modulus and Poisson’s ratio of the deformable junction.
Moreover G is given by:

G = 3a3 E ′

8π R2

(
1 − Rδ

a2

)2

. (6)

The unloading process without cracking starts from the
maximum force and contact radius, Fmax and amax, and
proceeds with unloading rate V until G > w0. Immediately
before the crack velocity vC = 0 and G = w0: from
equation (5) we deduce that Griffith’s criterion is violated when
F < Fcr:

Fcr ≡ a3
max E ′

R
− (6π a3

max E ′w0)
1/2. (7)

For Fcr � F � Fmax, equations (4) and (5) provide:

F = 3amax E ′

2
δ − a3

max E ′

2R
(8)

indicating that the force plot is described in this regime by a
linear relationship; this is valid for δ in the range δcr � δ �
δmax, with:

δcr ≡ 2Fcr

3amax E ′ + a2
max

3R
. (9)

We note that the Hertz theory upon which the JKR theory is
built is applicable only under the condition of a 	 R, which
is not strictly satisfied in the present case [19]. Estimation of
finite-size effects demands the introduction of corrections to
the elasticity equations, as the correction factors proposed by
Shull et al [27]. Assuming h = 2R to be the thickness of
the tested compliant layer (i.e. the PDMS bead diameter) and
a/h < 0.5 to be certainly satisfied, equation (8) is replaced by:

F = 3amax E ′

2(1 − amax/h)
δ − a3

max E ′

2R(1 − amax/h)
. (10)

The quantity k0 ≡ 3amax E ′/[2(1 − amax/h)] represents the
contact stiffness at unloading and the whole system can be
modeled by a series of two springs, the effective spring k0 and
the effective colloidal probe spring kC respectively. Both the
Young’s modulus E and the maximum contact radius amax can
be estimated for different values of unloading velocity V and
dwell time tC by interpolating the linear part of the unloading
process by means of equation (10), with E and amax as fitting
parameters.

In figure 5(a) we report the elastic modulus E
and maximum contact radius amax (averaged over several
realizations) obtained by fitting with equation (11) the
unloading curves acquired on sample 1 and plotted as a
function of V (for tC = 30 s, Fmax = 5.0 μN and a
loading velocity of 1 μm s−1): amax ≈ 3.3–3.4 μm, E ≈
1.6–1.7 MPa and k0,1 ≈ 16.5–18.5 N m−1 for V in the range
0.2–20 μm s−1. In figure 5(b) we report a similar data analysis
on unloading curves acquired for tC varying in the range 2–
100 s, Fmax = 2.5 μN and a loading velocity of V = 1 μm s−1.

Figure 5. Data analysis of unloading curves without cracking.
(a) Contact radius amax and Young’s modulus E obtained by linearly
fitting unloading curves acquired at different deformation rates V .
(b) Contact radius amax and Young’s modulus E obtained for
different values of dwell time tC.

It appears that the maximum contact radius remains around
3.0 μm with tC varying over two decades, whereas the Young’s
modulus of the probe stays around 1.65 MPa. Experimental
uncertainty on amax values is of ∼5%: in fact amax depends on
the ratio of the two parameters of the linear fit, therefore it is
affected only by the error on R (fitting errors are negligible).
On the contrary the experimental uncertainty on E rises up to
40% due to the combination of errors on amax and kC.

Estimated values for amax confirm that a micrometric
junction is formed between the PDMS bead and the surface
of sample 1; at the same time they provide an upper limit to
the contact area formed with rough samples 2 and 3. The
elastic modulus E is in the range of values reported for
PDMS probed by macroscopic quasi-static contact mechanics
experiments [33–35].

The contact mechanics of the PDMS bead with samples 2
and 3 involves formation and interaction of multiple contact
spots and cannot be treated by the single-asperity JKR
theory. Refined theories including multi-scale properties
of surface roughness, bulk creep effects and interfacial
viscoelasticity have been already reported [4, 7–9] and
considerable theoretical efforts are in progress. A tight
comparison of experiments with such sophisticated models
demands specific design of measurements and availability
of substrates with tunable roughness in a broad range of
values; as mentioned above, we will attempt a similar analysis
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in our forthcoming investigations. Hereafter we will adopt
simple qualitative arguments to depict the phenomenology of
PDMS contact mechanics in a multi-asperity regime. To this
purpose we simply note that a linear relationship is found to
described the force plots acquired on samples 2 and 3 (see also
figure 4(b)), which allows us to define contact stiffness k0,2 and
k0,3 respectively: we found the values k0,2 ≈ 10–13 N m−1 and
k0,3 ≈ 12–15 N m−1 confirming the larger compliance of the
rough interface with respect to the smooth one (k0,1 > k0,2 and
k0,1 > k0,3).

3.3. Unloading process with cracking

As described in the previous paragraph, the unloading
process with cracking corresponds to a monotonic reduction
of PDMS/substrate contact area during the unloading
ramp. Substantial differences emerge through comparison
of samples 1 and 2, highlighted by figures 4(a) and (b),
i.e. a decrease of adhesion force Fadh due to roughness
and the occurrence of multiple elastic instabilities on the
unloading curve (immediately after the adhesive peak) for
sample 2. Adhesion reduction is in agreement with a
relevant number of experimental investigations reported in
the past [5, 6, 14, 16–18, 28] as well as with predictions of
recent theoretical models [4]. Concerning the appearance of
elastic instabilities, we note that their number and shape strictly
depend on the specific location assumed by the PDMS bead
over the indented substrate, hence their presence should be
ascribed to individual detachment events occurring at isolated
asperities.

As expected, we observed a remarkable dependence of the
F(δ) curves on V and tC for the smooth as well as for rough
interfaces. Figures 6(a) and (b) summarize the variation of
the pull-off force Fadh with unloading velocity V and dwell
time tC respectively: for simplicity we chose Fmax = 5.0 μN
and tC = 30 s in the former case, and Fmax = 2.5 μN,
V = 1.0 μm s−1 for the latter. We note that Fadh separately
increases with V and tC, with an overall variation of about
30%. This response is ascribed to two concomitant effects,
namely the dynamic Young’s modulus E increasing with V ,
and the appearance of an effective work of adhesion w given
by the following phenomenological relationship:

w = w0(tC)[1 + f (T, vC)] (11)

where f → 0 as vC → 0. The w0(tC) function shows
the often-observed monotonic increase of w0 with tC due to
the activation of the available reorganization processes of the
interface upon contact [24]; the second term in the brackets
indicates, on the contrary, a dependence of w on vC arising
from energy dissipation at contact edges, which has been
proved experimentally by macroscale experiments [25, 27] and
derived by general theoretical arguments on crack propagation
in linear viscoelastic solids [36]. Therefore, the physical
significance of equation (11) is that w significantly overcomes
w0 at finite values of crack velocity and dwell time.

An estimation of the most relevant parameters of the
contact interface, i.e. w0(tC) and f (T, vC), in the absence of
roughness can be done through approximate theoretical models

Figure 6. Experimental adhesion data for a PDMS colloidal probe of
radius R = 10.5 μm interacting with SrTiO3 substrates.
(a) Dependence of the adhesive force Fadh on the unloading velocity
V at fixed dwell time tC ≈ 30 s and maximum applied load
Fmax = 5.0 μN. (b) Dependence of the adhesive force Fadh on the
dwell time tC at fixed unloading velocity V = 1 μm s−1 and
maximum applied load Fmax = 2.5 μN. (c) Comparison of
representative data for sample 1 with theoretical predictions based on
the Maugis–Barquins model. Arrows show the point where linear
fitting, providing estimates for E and amax, is replaced by numerical
integration of equations (12) and (14). The solid curve was generated
for V = 1 μm s−1, tC = 30 s, with the following combination of
parameters: w0(30) = 52 mJ m−2, n = 0.36, α = 250 (s/m)0.4.

(e.g. the Maugis–Barquins model [25]) and is reported in detail
in [19]. To this purpose we simply recall that the Maugis–
Barquins model assumes f (T, vC) = α(T )vn

C: the parameter

α(T ) is related to the Williams–Landel–Ferry shift factor aT

of the elastomer by α(T ) = an
T , where n ≈ 0.6 based on

macroscale peeling experiments of rubber-like materials. The
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crack velocity vC is thus given by:

vC =
∣∣
∣
∣
da

dt

∣∣
∣
∣ =

(
G − w0(tC)

αw0(tC)

)1/n

= 1

α1/n

[
3a3 E ′

8π R2w0(tC)

(
1 − Rδ

a2

)2

− 1

]1/n

. (12)

In case of an indentation device with infinite stiffness
(i.e. kC 
 k0) the time evolution of indentation is simply:

δ(t) = δcr − V t (13)

which can be inserted into equation (11). The latter can
be solved numerically with standard techniques, since the
involved parameters and initial conditions are known.

In contrast, for a finite stiffness indentation device
(i.e. kC ≈ k0), the deformation and unloading rates are related
by (see equations (1), (2) and (13)):

dδ

dt
= V − 1

kC

dF

dt
= 1

1 + 3
2

aE ′
kC

[
V − 3E ′

2kC

(
δ − a2

R

)
da

dt

]
.

(14)
Equations (12) and (14) are coupled and can be solved
iteratively as shown by Barquins and Maugis [37]: this
predicts the unloading curve from crack opening up to the final
separation.

In order to implement the Maugis–Barquins model for
load-deformation curves acquired on sample 1, the Young’s
modulus E and maximum contact radius amax were chosen
according to figure 5, and the remaining three unknown
parameters, w0(tC), n and α, were arbitrarily chosen and used
to calculate Fcr and δcr (from equations (7) and (9)) as well as
to predict the whole force plot for F < Fcr (by numerically
solving equations (12) and (14) with a fourth order Runge–
Kutta method); the generated curve was then compared with
the experimental one by visual inspection and w0(tC), n and α

were adjusted to minimize the difference between experimental
and predicted values.

In figure 6(c) we compare an experimental unloading
curve acquired on sample 1 at V = 1 μm s−1 and tC =
30 s with theoretical curves obtained by numerical integration
of Maugis–Barquins theory: the two vertical arrows denote
the starting point of numerical predictions, that is (δcr, Fcr)

given by equations (7) and (9). Agreement within 10%
between theory and experiment was always found for V =
0.1–10 μm s−1 by choosing the three parameters in the range
w0(30) = 50–55 mJ m−2, n = 0.35–0.38 and α =
210–260 (s m−1)0.4; such values are negligible affected by the
introduction of finite-size correcting factors into equations (12)
and (14) (see [19]).

Figures 6(a) and (b) demonstrate that interfacial viscoelas-
tic losses and surface rearrangements are not significantly af-
fected by the transition from a single-asperity contact to a
multi-asperity one, and we conclude that our estimates for
w0(tC), n and α can also be safely used to describe the isolated
junctions at the PDMS/sample 2 interface.

For completeness we recall that w0(tC) and f (T, vC) in
equation (11) can also be estimated using a new model recently
proposed by Greenwood and Johnson [26]: in such a case

f (T, vC) is related to the creep compliance function of a
standard linear ‘three-element’ solid, having a single creep
time constant τ . Through interpolation of representative data
we estimated τ ≈ 1.2 × 10−5–1.5 × 10−5 s for PDMS
beads [19], not too far from the creep time constant ≈10−6 s
found by Wahl et al for unfilled PDMS films by depth-sensing
nanoindentation under oscillatory loading conditions [38].
This complements the loading curves analysis previously
reported (section 3.1), which indicates that a longer time
constant τ ≈ 0.4 s dominates Young’s modulus relaxation.

4. Conclusions

In summary, we addressed the role of surface roughness
on interfacial stiffness and adhesion by investigating the
deformation of PDMS colloidal AFM probes in contact with
SrTiO3 substrates with different roughnesses.

The observed phenomena are well described as follows:
(i) loading–unloading curves depend on interfacial roughness
both qualitatively and quantitatively; (ii) contact stiffness re-
markably decreases for rougher contacts due to morphologi-
cal modulation of contact area; (iii) adhesion force is signifi-
cantly reduced on rougher contacts; (iv) viscoelastic losses and
structural rearrangements at the PDMS/SrTiO3 interface are
not appreciably affected by contact geometry. These points
support the growth of a phenomenological framework for the
contact mechanics of elastically soft, rough surfaces and sus-
tain efforts aiming at validating contact mechanics theories at
the mesoscale.
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